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Abstract

Stochastic daily precipitation models are commonly used to generate scenarios of cli-
mate variability or change on a daily time scale. The standard models consist of two
components describing the occurrence and intensity series, respectively. Binary logis-
tic regression is used to fit the occurrence data, and the intensity series is modeled by
a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal.
The precipitation series is then modeled using the joint density and standard software
for generalized linear models can be used to perform the computations. A drawback
of these precipitation models is that they do not produce a sufficiently heavy upper
tail for the distribution of daily precipitation amounts; they tend to underestimate the
frequency of large storms. In this study we adapted the approach of Furrer and Katz
(2008) based on hybrid distributions in order to correct for this shortcoming. In par-
ticular we applied hybrid gamma — generalized Pareto (GP) and hybrid Weibull-GP
distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in
western Bulgaria. We report the results of simulations designed to compare the models
based on the hybrid distributions and those based on the standard distributions. Some
potential difficulties are outlined.

1 Introduction

Stochastic precipitation models are important for forecasting and simulation purposes
in climate, hydrological and environmental system studies in modelling runoff, soil wa-
ter content, crop growth, droughts and floods. These models can aid in understand-
ing the performance of these systems under specific precipitation regimes. Depending
on the required precipitation timescale various models such as hourly, daily, weekly,
monthly, seasonal or annual have been developed to quantify complex precipitation
features, Srikanthan and McMahon (2002) and Yang et al. (2005). Once the model
has been calibrated at a given site one uses it to generate long sequences of artificial
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precipitation at that site. These sequences can be used to estimate statistics relating
to precipitation events in exactly the way one would do so if a long sequence of real
precipitation data were available. As a consequence better risk management strategies
and decision-making capabilities can be made.

In the following we shall consider precipitation models in daily time scale only. From
statistical point of view, daily precipitation totals are time series with a mixed density
comprising a discrete component at zero (for dry days) and a continuous positive real-
valued component (for rain days). A standard technique of analyzing the series is to de-
compose it into two components, namely the occurrence and the intensity processes,
Stern and Coe (1984), and then to model these separately using standard general-
ized linear model (GLM) techniques. The occurrence series, consisting of dry and wet
states, is modeled by an autoregressive binary logistic regression, and the intensity
series by a continuous-valued right-skewed distribution such as gamma, Weibull, log-
normal or mixture of exponential distributions. More precisely, modeling the occurrence
series means modeling the transition probabilities of the two-states first or higher or-
der Markov chain, Gabriel and Neumann (1962); Katz (1977). The daily precipitation
amounts are then modeled using the joint density of the two components. The seasonal
behavior of precipitation is accommodated by allowing the model parameters to vary
over the year using a finite Fourier representation, Coe and Stern (1982); Stern and
Coe (1984); Woolhiser (1992). The parameters can also be modeled as functions of co-
variates, e.g. atmospheric factors, such as North Atlantic Oscillation, El Nino-Southern
Oscillation, pressure, humidity, temperature, wind speed, or as slowly-varying trend
functions over the years. Therefore the occurrence (the states transition probabilities)
and intensity model components become non-stationary. The required computations
can be carried out using standard software procedures for GLMs and generalized addi-
tive models (GAMs), e.g., McCullagh and Nelder (1989); Hastie and Tibshirani (1990);
Fahrmeir and Tutz (2001). The properties and applicabilities of such models in differ-
ent time scales are discussed by Brandsma and Buishand (1997); Katz and Parlange
(1998); Grunwald and Jones (2000); Hyndman and Grunwald (2000); Beckman and
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Buishand (2002); Chandler and Wheater (2002); Chandler (2005); Yang et al. (2005);
Furrer and Katz (2007), to name a few. Reviews about stochastic precipitation modeling
can be found in Woolhiser (1992); Wilks and Wilby (1999); Srikanthan and McMahon
(2002) and Maraun et al. (2010).

It is well-known that the above continuous distributions tend to underestimate the
heavy precipitation. Furrer and Katz (2008) developed a flexible approach, based on
gamma and GP distributions, in order to model the whole spectrum of precipitation
intensities. A gamma distribution (with covariates) is fitted to the entire intensity data,
and then a GP distribution (again with covariates) is fitted to the observations above
an appropriately chosen threshold, u. The two estimated density functions are spliced
continuously at v by using the gamma density below the threshold and the GP den-
sity (with estimated shape parameter and modified scale parameter estimate) above
the threshold. The approach of Furrer and Katz (2008) is general, and so other right-
skewed distributions, such as Weibull or inverse Gaussian, can be used instead of the
gamma. These authors pointed out some of the difficulties with the procedure, e.g.
that threshold selection for splicing the distributions is purely subjective. Carreau and
Bengio (2009) proposed another hybrid distribution type which is built by splicing the
GP distribution tail to a Gaussian or a truncated Gaussian distributions. The usage of
the distribution for stochastic downscaling of precipitation and river runoff purposes is
discussed in Carreau et al. (2009) and Carreau and Vrac (2011).

This paper describes a practical implementation and adaptation of the Furrer and
Katz (2008) approach and offers an improved daily precipitation model with a heavier
tail to describe rainfall series in Bulgaria, conditional on atmospheric data. We also
study the reliability of the procedure and report our experience in a concrete example
for daily precipitation data at Ihtiman.
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2 Case study — Ihtiman data set

We analysed the daily precipitation series at Ihtiman, Bulgaria, for the time period 1
January 1960-31 December 2007. This series is of particular interest because 234 mm
of rainfall was recorded for a 24 h period on 5 August 2005. Each observed value
represents the total precipitation over a 24 h period ending at 06:00 GMT (08:00 local
time) measured using Wild’s standard rain gauge mounted 1 m above the ground. The
North Atlantic Oscillation (NAO) daily anomaly time series was used in order to study
its relationship to daily precipitation at Ihtiman.

3 Daily precipitation modeling

Let Y; be the precipitation on day ¢, t =1,...,T, and Z; a vector of covariates, e.g.
associated atmospheric variables or their derivatives. Day ¢ day is defined to be dry
if Y; <c, where ¢ is a prespecified cutoff constant — we used the standard choice
¢ = 0.1mm—and as wet if ¥; > ¢. Observed values of the above quantities are denoted
by lower case letters.

The sequence of wet and dry days is represented by the indicator function /; = /;,, .
which takes on a value of 1 if day ¢ is wet, and zero if day ¢ is dry. Let 7;(z;) represent
the probability that day ¢ is wet, conditional on the covarates z;. We define the daily
precipitation intensity as R; = Y; if Y; > ¢, as R; = missing otherwise, and denote its
probability density function, conditional on the atmospheric predictors, by q(r;|z;). This
distribution is positively skewed because smaller intensities occur more frequently than
larger intensities.

The daily precipitation series is modeled using a mixed distribution comprising a dis-
crete component at zero (for dry days) and a continuous-valued right-skewed density
(for wet days). As the wet and dry states are exclusive and exhaustive the resulting
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distribution is given by

(el Xe = Xx) = (1 = (X)) fy <o + T (X)) Qe (relX Dy, 201
= (1 -m(x;)) (1 - /[y,zc]> + ﬂt(Xt)Qt(rtlxt)/[ytZC]

= (1= ) o) (1, () @ (1 )z

where X; = (/t_1,...,/,_p, Yectoo - Yips Zats - ..,Zk_p,t)r is a vector of potential predic-
tors (covariates).

In practice q;(r;|x;) is taken to be gamma (Stern and Coe, 1984), Weibull (Zucchini
et al., 1992), log normal or some other continuous right-skewed distribution. If the in-
terest is on extremes intensities then the GP density can be used.

Assuming m;(x;) has no parameters in common with q,(r;|x;) the likelihood for

(Yt—p-1,---»¥n) can be factorized as follows
n n
L= I_l fi(velx:) = I_l (1 —”t(Xt))(1_l[”ZC]) (1, (X;) G (relx,)) eze (1)
t=p+1 t=p+1
n
= I_l (1—”t(Xt))(1_l[”2”])(”t(Xt))/[y’ZC] |_| qr(relx;)-
t=p+1 t=p+1,y;>c

Standard GLMs software can be used to estimate the unknown parameters due to
this factorization of the likelihood; the first part is the likelihood of the binary time series
and the second product is the likelihood of the intensity time series. The vglm procedure
from the R package VGAM package can fit such models, Yee and Stephenson (2007).
This general likelihood maximization procedure, based on an iterative reweighted least
squares, is applicable not only to standard GLMs but also to generalized additive mod-
els (GAMs), Hastie and Tibshirani (1990). Moreover, by this procedure one can model
extreme values easily using generalized extreme value (GEV, block maxima) and peaks
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over threshold (GP) distributions, just like GLMs and GAMs, Green (1984) and Coles
(2001).

The standard approach is to model the probabilities 7;(x;) within GLMs with logit link
function

logit(m,(x;)) = log(m;(x;) /(1 = m,(x;)))

p r
=U(x;) =ag+ z (akit—k + gk(yt—k)) + z 9,(Zi_pt)+9re(b).
k=1 J=p+1

The function u(x;) should be periodic and approximately sinusoidal in shape in order in
to reflect the seasonal behaviour of rainfall occurrence, and a remainder term accounts
for deviations from this pattern, i.e., the 9, for j=p+1,...,r+1 should be smooth
functions. Interaction terms between the predictors can be considered as well. A simple
logit link function, consisting of a seasonal cycle and lagged occurrence and NAO
effects, is:

logit(m;(z;)) =ag + ayi;_q + a,cos(2mt /365.25) + az sin(2nt /365.25) + a,NAO(t — 1)
+ [B, cos(2mt /365.25) + B3 sin(2mt /365.25) + B4NAO(t — 1)]i;_1.

The covariate vector for this model is z; = (1,/;_4,cos(2mt /365.25), sin(2mt /365.25),
NAO(t - 1),cos(2nt /365.25)/;_4,sin(2mt /365.25)/;_1,NAO(t — 1)it_1)T. Due to the in-
teractions terms included in this logit link function, the conditional two-states non-
stationary transition probabilities of a wet day following a dry day py4(f) and a wet
day following a wet day p44(f) are allowed different cyclic behavior in the model. In
this way the parameter estimates of these probabilities can be computed from ;(z;)
in one run instead formulating two separate models and respective data set as fol-
lows: p;4(t) = m;(z;) for i =i;,_4 ={0,1}. Moreover, based on the total probability for-
mula one can get the following relationship between the conditional and uncondi-
tional of the previous day probabilities: m;(z;) = m;_1(Z;_1)P11() + (1 = 7 _1(Z2:_1))Po1 (t)-
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This representation is very useful in simulation of artificial rainfall sequences because
of the recurrence relationship between m;(.) and the transition probabilities py4(f)
and p11(z‘) Indeed, under the plausible assumption 7(f) ~ (t — 1) for any t we get

T(t) ~ Poy(t)/(Po1(t) + 1 = p11(t)). More details can be found in Zucchini et al. (1992)
and Furrer and Katz (2007).

The intensities can be modeled by gamma, Weibull or other right-skewed continuous
distribution, and the extreme intensities by the GP distribution. There exist various pa-
rameterisations for these distributions; those used here are listed below. The density
function of the gamma distribution is defined by

b? x4V exp(-bx)
fx)=4  T@ x>0
0 x =0,

where I'(a) is the gamma function, a > 0 and b > 0 are the rate and shape parameters.
The mean, variance and the scale parameters of the gamma distributions are given by
u=a/b,o®=u?/aandoc=1/b.

The density function of the Weibull distribution is given by

{a x@ Vexp(-(x/b)?) x>0

ba

f(x) =
) 0 x=0,

where a > 0 and b > 0 are the shape and scale parameters.
The density function of the generalized Pareto distribution with threshold v is given

by
(PO
a0 =3 |1+

where o >0 and ¢ are the scale and shape parameters and [A], = max(A,0). The

shape parameter ¢ determines the tail behavior of the GP distribution: a heavy tail if ¢

is positive, a bounded tail if ¢ is negative and a light (exponential type) tail if ¢ = 0.
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A standard approach in GLMs and extreme value modeling is to link the parameters
of these distributions to covariates as follows

log(a) = 6] x11, log(b) = 6] Xat, 10g(0) = 6L Xat, ¢ = 6] Xat,

where 6; is vector of unknown parameters and the covariate vector x;; is a subset of x;
fori =1,...,4. The log-link function is used to ensure positiveness of the scale (o) and
rate (a) parameters in maximization of the intensity likelihood. Details can be found in
Yee and Stephenson (2007). An example of such a log-link function is

p r
logv(x;) = uq(x;) = Bo + z (:Bkit—k + hk(}/t—k)) + z hi(zj_pt) + D (2).

k=1 J=p+1
where the function u4(x;) has to be similar to u(x;) and h4, ..., h,,1 have to be smooth
functions. Interaction terms between the predictors can be considered as well. A sim-
ple log-link function, consisting of a seasonal cycle and lagged occurrence and NAO
effects, is:

logv(x;) = Bg + B1i;_1 + Bocos(2mt /365.25) + B3 sin(2mt /365.25) + B,NAO(t - 1).

4 Modeling daily precipitation totals

In this section we consider a number of daily precipitation models for the lhtiman se-
ries. We start with a brief exploratory data analysis to get an overall impression of
the behaviour of the series and then proceed to the development of daily precipitation
models using gamma and Weibull regressions, and the GP distribution for the extreme
intensities.

4.1 Exploratory data analysis

The interannual and seasonal daily precipitation data distributions at Ihtiman for the
whole period are displayed Fig. 1. Seasonality is evident in the lower line plot. The time
1231
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varying threshold based on the 87 % intensity quantile is displayed in the left panel of
Fig. 2. The smooth curve was estimated using quantile regression model with inter-
annual and seasonal periodic (sine-cosine) components to the daily intensities. The
gr procedure from the R package quantreg was used for this purpose. Details about
quantile regression can be found in Koenker (2005). We note that the time varying
threshold is a continuous analog of the widely-used procedure of splitting the data into
seasons and allowing for different thresholds in each season. The right panel gives the
exceedances over this threshold are plotted against the days; the monthly threshold
values based on this model are given in Table 1.

4.2 Fitting of extreme precipitation

Having estimated the time-varying threshold model, clusters of exceedances separated
from each other by 3 days run length are identified and each cluster maximum is se-
lected. This is done to avoid dependence in the likelihood specification. In this way
557 peaks out of 17532 observations were extracted resulting in an rate of 11.60 of
excesses per year. The cluster peaks are displayed in the right panel of Fig. 2. The
tiny black bullets and circles correspond to cold and warm months intensities, respec-
tively. This plot exhibits higher precipitation intensities during the warmer months but
there are no strong grounds for applying a varying threshold. These extreme inten-
sities are fitted using a point process model, as in Coles (2001). The advantage of
the point process approach is that it unifies the classical block maxima (GEV) and the
peaks over threshold (GPD) approaches and allows modeling of the location, scale and
shape parameters of the GEV distributions as functions of time dependent covariates
in order to account non-stationarity effects. The parameter estimates and Bayesian in-
formation criterion (BIC) values for several models fits are presented in Table 2. The
non-stationary model that minimizes the BIC includes a seasonal cycle and a lagged
NAO effect in the location parameter, a seasonal cycle in the (logarithm of the) scale
parameter, and has a constant shape parameter. The estimated parameters of this
model support the notion that higher location values are associated with higher precip-
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itation intensities synchronized with negative NAO index anomalies. On the other hand
higher scale parameter estimates are associated with higher variability in precipita-
tion extremes. The scale intercept estimate of this model equals exp(2.413) = 11.167.
Residual probability plots for the homogeneous model (with no covariates), and the
best among these 6 fits (according to the BIC) are shown on Fig. 3. The plots indi-
cate reasonable but by no means not perfect fits and that the non-stationary fits better
than the homogeneous model. The corresponding return levels are given in Table 3. It
is seen that the non-stationary model gives reasonable return-level estimates for the
historical data. All the computations in this section were done by the pp.fit and pp.diag
procedures from the R package ismev.

4.3 Gamma and Weibull intensity models

In this section we compare a number of simple gamma and Weibull models with and
without covariates (seasonal cycle and NAO effect) in order to assess their ability to fit
the entire intensity series. The corresponding parameter estimates and BIC values are
given in Table 4. The homogeneous models are presented for completeness only. It is
seen that the inclusion of a periodic component significantly reduces the BIC values of
both gamma and Weibull models. According to the likelihood ratio test (LRT) the mod-
els with seasonal components lead to improvements in comparison with homogeneous
models and that the inclusion of NAO effects leads to further improvements. (The LRT
and its tail probability values are not presented.) Both models preserve a physical inter-
pretation that heavier intensities are associated with negative NAO anomalies. The left
plot of Fig. 4 shows a quantile-quantile (Q-Q) plot for the model with a seasonal cycle
based on the GLMs with gamma and Weibull fits. The left panel of the figure is based
on data for a single month (August) whereas the middle panel is for the entire period.
The Weibull distribution leads to a slightly better fit but the fits are poor with respect to
extreme intensities.

For validation purposes the parameter estimates of some simple daily precipitation
occurrence models are presented in Table 5. Obviously the homogeneous model is
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completely inadequate but one can see the BIC value reduction with of the remaining
models conditional on seasonal cycle, previous day precipitation occurrence and NAO
effect with lag one. As expected the seasonal model with lagged occurrence and NAO
effects minimizes the BIC.

5 Hybrid gamma—GP density

Furrer and Katz (2008) define the density function of the hybrid gamma—GP distribution
as:

h(x)={f(x) xX<u
(1-F(w)gx) X>U

where f(x) is the gamma density, F(x) the gamma distribution functions, and the factor
(1 = F(u)) ensures h(x) normalization.
In order to attain continuity at the threshold v these authors impose the condition

flu)=01-FWlgw) =[1-F(u)/o.

The resulting GPD scale parameter is equal to o = (1 — F(u))/f(u) which is the inverse
of the hazard function of the gamma distribution taken at u. Thus the GPD scale pa-
rameter can be written in terms of the parameters of the gamma distribution which
accommodates the observations below the threshold. The authors recommend the fol-
lowing estimation procedure: (i) fit a GLM with gamma link function with covariates to
the entire intensity dataset; (ii) fit a GP with covariates to the observations above the
chosen threshold u; (iii) replace the GP scale parameter by the estimated gamma haz-
ard function. Clearly an analogous procedure is applicable for other hybrid distributions,
such as Weibull-GP or inverse Gaussian—GP.
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5.1 Experiments with hybrid GP distributions

We now compare the performance of the gamma—-GP and Weibull-GP hybrid distribu-
tions in fitting the daily precipitation intensity data. We explore the threshold selection
and its effect on generation of artificial daily precipitation data. The methodology of
Furrer and Katz (2008) previously described is followed closely.

The QQ-plots Fig. 5 are based on different fits of observed vs. fitted gamma (g) and
hybrid gamma—GP (h) quantiles of precipitation intensity seasonal model at Ihtiman
with thresholds 5 mm (left), 10 mm (middle) and 15 mm (right) in May (upper line plots)
and August (middle line plots) and for the entire year (lower line plots). Results of
a similar standard are obtained for the Weibull and Weibull-GP distributions. The hybrid
models are significant improvement over the gamma and Weibull models.

Figure 6 shows the fitted gamma, GP, hybrid and gamma-GP (upper line plots) and
Weibull, GP and Weibull-GP (lower line plots) log-densities with three threshold values
5mm, 10mm and 20 mm for precipitation intensity for the entire year. The homoge-
neous fits (no covariates in the model) are shown only in order to get a better percep-
tion. The hybrid density is indeed continuous and possesses a heavier tail than the
gamma and Weibull densities. One can see the effect of the threshold choice in GP
distribution tail estimation. A lower threshold choice u gives a larger weight (1 — F(v))
of the GP distribution. Thus one can expect that the hybrid distributions quantiles cor-
responding to these lower threshold GP fits would be larger. The plots of Fig. 7 show
the 95 % (green), 98 % (red) and 99 % (black) quantiles of the fitted gamma (solid lines)
and hybrid gamma—GP (dashed lines) distributions (upper line plots) as well the fitted
Weibull and hybrid Weibull-GP (lower line plots) as functions of the day of the year. The
tiny black bullets on the plots correspond to observed precipitation for the entire period.
Indeed, the hybrid quantiles (dashed lines) on left column plots are higher than those
on the right column plots. The effect due to hybridization is most visible on the high-
est quantiles. Therefore, threshold determination is of crucial importance of calibration
daily precipitation hybrid model conditional on atmospheric covariates.
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Figure 8 shows Q-Q plots of observed vs. simulated gamma (g) and vs. hybrid
gamma—GP (h) quantiles of the seasonal intensity model with a lagged NAO effect
over a year at lhtiman with 5mm (top row), 10 mm (middle row) and 15mm (bottom
row) thresholds. The simulated time series consist of 300 samples of 47 yr of daily pre-
cipitation totals from GLMs with the gamma distribution (g) and with the gamma-GP
(h) hybrid distributions for each threshold. The majority of the simulated data look like
those displayed in the left and middle column plots, but a small percentage look like
those displayed in the right column plots. Similar results are obtained for the Weibull—-
GP hybrid distribution. The monthly box-plots of daily observed (white) and simulated
(gray) precipitation totals are presented on the plots of Fig. 9 in order to get an im-
pression about their distributions: the left and middle column panels are based on
the hybrid intensity distributions where the right column panels are based on classi-
cal GLMs with the gamma and Weibull distributions. The classical GLMs with gamma
and Weibull intensity component represent the historical data except for the extreme
intensities, which is well known deficiency. The hybrid models are capable of gener-
ating series with extremes as large as the observed extremes, or (though unlikely to
occur) even larger, depending on the threshold choice. The distributions of the monthly
observed and simulated precipitation totals are presented on the plots of Fig. 10. From
the right column plots of this figure one can see that the standard intensity GLMs with
the gamma and Weibull distributions are not capable of generating monthly precipita-
tion totals with similar magnitude as the historical one whereas the hybrid gamma and
Weibull-GP distributions are capable to do so.

The distribution functions of the wet spells and number of wet days within a sea-
son are important in applications in various studies. The left plot of Fig. 11 shows the
distribution of wet spells for the historical and simulated data. As usual wet spells are
defined as the number of consecutive days with precipitation. It is seen that the model
captures well the temporal correlation in the data. The middle and right plots of this fig-
ure show the monthly number of wet days distribution of historical vs. simulated data.
Results of a similar standard are obtained for the Weibull and Weibull-GP distributions.
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The distributions of the observed (solid lines) and simulated (dotted lines) precipita-
tion totals over period of 10 and 60 days are shown on the plots of Fig. 12. The simu-
lated data are generated using intensity GLMs with hybrid Weibull-GPD and threshold
15mm (left column plots) and standard Weibull (right column plots) distributions. It is
seen that the hybrid Weibull-GP distribution simulated data possesses a heavier tail
than the standard Weibull distribution. Similar results are obtained for the gamma-GP
hybrid distribution.

The left plot dots of Fig. 13 represent the estimated conditional probabilities p44y and
Poq and the unconditional precipitation probability p(t) := m;(z;) (red); the dashed and
smoothed lines are based on the R locally weighted scatterplot smoothing procedure
loess through the corresponding dots and observed frequencies (not plotted). In the
right plot of this figure are given the historical and simulated probabilities (smoothed
by loess) of having not less than 40 mm, 80 mm, 120 mm, 160 mm and 200 mm total
precipitation for a run of 60 consecutive days, starting on any given day of the year for
Ihtiman station. The order of the lines corresponds to their order in the legend. The
empirical and the model probabilities match each other closely.

All model fitting and generation of precipitation series was done with the free soft-
ware environment for statistical computing and graphics: the R Project for Statistical
Computing. The vgim procedure from VGAM package with gamma, Weibull and gpd
link functions was used to carry out the estimation (Yee and Stephenson, 2007).

6 Conclusions

Several daily precipitation models with different models for the intensity component
were examined. We are able to confirm that, on the whole, the simulated precipita-
tion series based on the hybrid distributions of Furrer and Katz (2008) preserve the
properties of the observed series. Although each of the precipitation model compo-
nents can be estimated using standard software procedures that are widely available,
the subjectivity in threshold selection in splicing the distributions is an awkward task.
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Thus development of a daily precipitation models with such distributions, conditional
on a large number of atmospheric predictors for downscaling purposes, is still in its
early stages. Once this problem would be solved satisfactorily then an extension of
the improved at site daily precipitation amount model to a multi-site daily precipitation
model would be straightforward on the base of the conditional independence precipi-
tation amount model within the non-homogeneous hidden Markov models framework,
Vrac and Naveau (2007) and Neykov et al. (2012).
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Table 1. Monthly thresholds based on time varying threshold.

Jan Feb Mar

Apr

May

Jun Jul

Aug

Sep  Oct

Nov Dec

799 845 9.37

10.55

11.65

12.38 1253

12.05

11.10 9.91

8.82 8.12
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Table 2. Estimated parameters and BIC values (minimum in bold) for candidate point process
models for daily precipitation extremes over the entire year with a time-varying threshold at
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Ihtiman.
Location u Scale logo
Intercept Cosine  Sine NAO Intercept Cosine  Sine NAO  Shape ¢ BIC
34.447 2.469 0.131  2018.098
33.680 -1.222 -2.361 2.455 0.159 2012.348
34.458 2.513 0.033 0.076 0.183  2009.993
33.828 -5.481 -5.951 2.412 -0.176 -0.149 0.126 2003.701
33.834 -5.477 -5.962 -0.062 2.413 -0.176 -0.149 0.127 2002.516
33.966 -5.236 -5.237 -0.041 2.388 -0.171  -0.121 -0.111 0.116 2010.117
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Table 3. Return levels based on point process model fit: (i) homogeneous model; (ii) seasonal
cycle in the location and scale parameters and NAO index as location parameter.

Years 10 20 50 100 500 1000 5000 10000

(i) Return Levels 65.73 78.01 9592 110.99 152.11 17290 229.78 258.57
(ii) Return Levels 65.44 77.46 94.82 109.29 148.17 167.52 219.65 245.61
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Table 4. Estimated parameters and BIC values for candidate gamma (left) and Weibull (right)
models for daily precipitation intensity over the entire year at Ihtiman.

gamma log(rate) Weibull scale logo

Intercept Cosine  Sine NAO  Shapeb BIC Intercept  Cosine Sine NAO  Shapea BIC

-1.857 28616.93 1.409 0.798  28410.37

-1.834 0.169 0.219 0.751 28483.62 1.418 -0.162 -0.214 0.808  28305.52

-1.832 0.174 0.215 -0.057 0.752 28312.39 1.416 -0.167 -0.211 -0.053 0.808 28135.98
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